Муниципальное общеобразовательное учреждение «Киришская средняя общеобразовательная школа №6»

Рабочая программа по физике 7 -9 класс

(базовый уровень).

учителя математики и физики Смирновой Галины Валентиновны

> Рассмотрена и рекомендована к утверждению Педагогическим советом МОУ «КСОШ №6»

Протокол № 10

от «29» июня 2018г.

Пояснительная записка.

Рабочая программа линии УМК «Физика — Сферы» (7–9 классы) для основной школы разработана на основе современных требований, предъявляемых к образованию, на базе Федерального государственного стандарта общего образования, Требований к результатам освоения основной образовательной программы основного общего образования, Фундаментального ядра содержания образования, Примерной программы по физике.

Физика как наука занимается изучением наиболее общих закономерностей природы, поэтому курсу физики в процессе формирования у учащихся естественно-научной картины мира отводится системообразующая роль. Способствующие формированию современного научного мировоззрения знания по физике необходимы при изучении курсов химии, биологии, географии, ОБЖ. Межпредметная интеграция, связь физики с другими естественно-научными предметами достигаются на основе демонстрации методов исследования, принципов научного познания, историчности, системности.

На ступени основного общего образования для обязательного изучения физики отводится 204 ч, в том числе в 7, 8 и 9 классах по 68 учебных часов в год, или 2 ч в нелелю.

Программа разработана к учебникам:

- 1. Физика. 7 класс. Учебник для общеобразовательных учреждений. Авт. Белага В.В., Ломаченков И.А., Панебратцев Ю.А.
- 2. Физика. 8 класс. Учебник для общеобразовательных учреждений. Авт. Белага В.В., Ломаченков И.А., Панебратцев Ю.А.
- 3. Физика. 9 класс. Учебник для общеобразовательных учреждений. Авт. Белага В.В., Ломаченков И.А., Панебратцев Ю.А.

1.Планируемые результаты освоения учебного предмета.

Выпускник научится использовать термины: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения

Выпускник получит возможность:

- понимать смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы.
- понимать смысл физических законов: Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля—Ленца, прямолинейного распространения света, отражения света;

описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение,

плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

- использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока.
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света
- > выражать результаты измерений и расчетов в единицах Международной системы
- приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях.
- > решать задачи на применение изученных физических законов
- ▶ осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем
- познакомиться с примерами использования базовых знаний и навыков в практической деятельности и повседневной жизни для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники; контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире; рационального применения простых механизмов; оценки безопасности радиационного фона.

Механика.

Выпускник научится:

распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, колебательное движение, резонанс, волновое движение;

- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость еè распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- ➤ анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение.
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета.
- ▶ решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость еè распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для еè решения, и проводить расчèты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- ▶ различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приемам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления.

Выпускник научится:

- ▶ распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, темпера-тура, удельная теплоемкость вещества, удельная теплота плавления и парообразо-вания, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- **р**азличать основные признаки моделей строения газов, жидкостей и твердых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного
- действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы,
- необходимые для еè решения, и проводить расчèты.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
- приводить примеры практического использования физических знаний о тепловых явлениях;

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приемам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления.

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- ➤ анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- ▶ решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для ее решения, и проводить расчеты.

Выпускник получит возможность научиться:

 использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими

- устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- ▶ различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электри-ческого заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля Ленца и др.);
- приемам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- > соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- ▶ различать основные характеристики звезд (размер, цвет, температура), соотносить цвет звезды с ее температурой;
- различать гипотезы о происхождении Солнечной системы.

2.Содержание учебного предмета.

7 класс

Физика и мир, в котором мы живем.

Что изучает физика. Некоторые физические термины. Наблюдение и опыт. Физические величины и их измерения. Измерение и точность измерения. Человек и окружающий его мир

Строение вещества.

Строение вещества. Молекулы и атомы. Броуновское движение. Диффузия. Взаимное притяжение и отталкивание молекул. Смачивание и капиллярность. Агрегатные состояния вещества.

Движение, взаимодействие, масса.

Механическое движение. Скорость. Средняя скорость. Ускорение. Инерция. Взаимодействие тел и масса. Плотность и масса

Силы вокруг нас.

Сила. Сила тяжести. Равнодействующая сила. Сила упругости. Закон Гука. Динамометр. Вес тела. Невесомость. Сила трения. Трение в природе и технике.

Давление твердых тел, жидкостей и газов.

Давление. Способы увеличения и уменьшения давления. Природа давления газов и жидкостей. Давление в жидкости и газе. Закон Паскаля. Расчèт давления жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Использование давления в технических условиях.

Атмосфера и атмосферное давление.

Вес воздуха. Атмосферное давление. Измерение атмосферного давления . Опыт Торричелли. Приборы для измерения давления.

Закон Архимеда. Плавание тел.

Действие жидкости и газа на погруженное в них тело. Закон Архимеда. Плавание тел. Воздухоплавание

Работа, мошность, энергия.

Механическая работа. Мощность. Энергия. Потенциальная энергия. Кинетическая энергия. Закон сохранения механической энергии. Источники энергии. Невозможность создания вечного двигателя

Простые механизмы. «Золотое правило механики».

Рычаг и наклонная плоскость. Блок и система блоков. «Золотое правило» механики. Коэффициент полезного действия.

Лабораторные работы:

Лабораторная работа № 1. Определение цены шкалы измерительного прибора

Лабораторная работа №2. Определение объема твердого предмета

Лабораторная работа №3. Измерение размеров малых тел

Лабораторная работа №4. Измерение массы тела на уравновешенных рычажных весах.

Лабораторная работа №5. Определение плотности твердого тела с помощью весов и измерительного цилиндра.

Лабораторная работа № 6. Градуировка динамометра. Исследование зависимости силы упругости от удаления пружины. Определение коэффициента упругости пружины

Лабораторная работа № 7. Определение давления эталона килограмма.

Лабораторная работа № 8. Измерение выталкивающей силы, действующей на погруженное в жидкость тело

Лабораторная работа № 9. Изучение изменения потенциальной и кинетической энергии тела при движении тела по наклонной плоскости

Лабораторная работа № 10. Проверка условия равновесия рычага.

Лабораторная работа № 11. Определение коэффициента полезного действия наклонной плоскости

8 класс

Внутренняя энергия

Температура и тепловое движение. Внутренняя энергия. Способы изменения внутренней энергии. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты. Экспериментальная проверка уравнения теплового баланса.

Изменения агрегатного состояния вещества.

Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Плавление аморфных тел. Испарение и конденсация. Насыщенный пар. Кипение. Удельная теплота парообразования. Влажность воздуха

Тепловые двигатели

Энергия топлива. Принцип работы тепловых двигателей. КПД теплового двигателя. Двигатель внутреннего сгорания. Паровая турбина. Реактивный двигатель Преобразование энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Электромагнитные явления

Электризация тел. Электрический заряд. Электроскоп. Проводники и диэлектрики. Делимость электрического заряда. Электрон. Строение атомов. Ионы. Природа электризации тел. Закон сохранения заряда Электрическое поле. Электрические явления в природе и технике. Электрический ток. Источники электрического тока. Гальванические элементы . Аккумуляторы. Электрический ток в различных средах Примеры действия электрического тока. Электрического тока. Электрического тока. Ома для участка цепи. Последовательное и параллельное соединение проводников. Сопротивление при последовательном и параллельном соединениях проводников. Работа электрического тока. Закон Джоуля Ленца. Мощность электрического тока. Электрические нагревательные приборы. Магнитное поле прямолинейного тока. Магнитное поле катушки с током. Магнитное поле прямолинейного тока. Магнитное поле катушки с током. Магнитное поле прямолинейного тока. Вращение рамки с током в магнитном поле. Изучение принципа работы электродвигателя.

Движение и силы.

Система отсчета. Перемещение. Перемещение и описание движения. Графическое представление прямолинейного равномерного движения. Скорость при неравномерном движении. Ускорение и скорость при равнопеременном движении. Перемещение при равнопеременном движении. Инерция и первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Импульс силы. Импульс тела. Закон сохранения импульса. Реактивное движение.

Лабораторные работы:

Лабораторная работа № 1. Экспериментальная проверка уравнения теплового баланса.

Лабораторная работа №2. Измерение удельной теплоёмкости вещества.

Лабораторная работа №3. Определение влажности воздуха.

Лабораторная работа №4. Сборка электрической цепи и измерение силы тока в различных её участках.

Лабораторная работа №5. Измерение напряжения на различных участках электрической цепи.

Лабораторная работа № 6. Измерение сопротивления при помощи амперметра и вольтметра.

Лабораторная работа № 7. Регулирование силы тока реостатом.

Лабораторная работа № 8. Измерение работы и мощности электрического тока

Лабораторная работа № 9. Сборка электромагнита и испытание его действия.

Лабораторная работа № 10. Изучение принципа действия электродвигателя.

Лабораторная работа № 11.Изучение равномерного прямолинейного движения.

Лабораторная работа № 12. Измерение ускорения прямолинейного равноускоренного движения.

9 класс

Движение тел вблизи поверхности Земли и гравитация.

Повторение кинематики. Графическое описание движения. Средняя скорость. Повторение законов Ньютона. Движение тела, брошенного вертикально вверх, Движение тела, брошенного горизонтально. Движение тела, брошенного под углом к горизонту .Движение тела по окружности. Период и частота. Закон всемирного тяготения. Движение искусственных спутников Земли. Гравитация и Вселенная.

Механические колебания и волны.

Механические колебания. Маятник. Период колебаний нитяного и пружинного маятника. Характеристики колебательного движения. Гармонические колебания. Затухающие колебания. Вынужденные колебания. Резонанс. Волновые явления. Длина волны, Скорость распространения волны

Звук

Звуковые колебания. Источники звука. Звуковые волны. Скорость звука. Громкость звука. Высота и тембр звука. Отражение звука. Эхо. Резонанс в акустике Ультразвук.

Электромагнитные колебания и волны.

Индукция магнитного поля. Однородное магнитное поле. Магнитный поток Электромагнитная индукция. Переменный электрический ток. Электромагнитное поле. Электромагнитные колебания. Электромагнитные волны.

Геометрическая оптика.

Свет. Источники света. Распространение света в однородной среде. Отражение света. Плоское зеркало. Преломление света. Линзы. Фокусное расстояние, оптическая сила линзы. Изображение, даваемое линзой. Глаз как оптическая система. Оптические приборы.

Электромагнитная природа света.

Скорость света, методы измерения скорости света. Разложение белого света на цвета. Дисперсия света. Волновые свойства света. Интерференция света. Дифракция света. Поперечность световых волн. Электромагнитная природа света

Квантовые явления.

Опыты, подтверждающие сложное строение атома. Открытие электрона. Излучение и спектры. Квантовая гипотеза Планка. Атом Бора. Радиоактивность. Состав атомного ядра.

Ядерные силы и ядерные реакции. Деление и синтез ядер. Атомная энергетика.

Строение и эволюция Вселенной.

Структура Вселенной. Физическая природа Солнца и звèзд. Спектр электромагнитного излучения. Рождение и эволюция Вселенной. Современные методы исследования Вселенной.

Лабораторные работы:

Лабораторная работа№1. Изучение движения тел по окружности.

Лабораторная работа №2. Изучение колебаний нитяного маятника.

Лабораторная работа №3. Изучение зависимости периода колебаний маятника от длины нити.

Лабораторная работа№4. Изучение зависимости периода колебаний груза на пружине от массы груза.

Лабораторная работа №5. Изучение явления электромагнитной индукции.

Лабораторная работа №6. Исследование зависимости угла отражения света от угла падения.

Лабораторная работа №7. Измерение фокусного расстояния собирающей линзы.

Лабораторная работа №8. Получение изображения с помощью собирающей линзы.

Лабораторная работа №9. Наблюдение явления дисперсии света.

Лабораторная работа №10. Измерение элементарного электрического заряда.

3.Тематическое планирование. 7 класс.

№ п/п	Наименование разделов и тем	Всего часов
1	Физика и мир, в котором мы живем	7
2	Строение вещества	6
3	Движение, взаимодействие, масса	10
4	Силы вокруг нас	10
5	Давление твердых тел, жидкостей и газов	10
6	Атмосфера и атмосферное давление	4
7	Закон Архимеда. Плавание тел	6
8	Работа, мощность, энергия	7
9	Простые механизмы. «Золотое правило» механики	7
10	Повторение	1
	Итого:	68

8 класс.

№ п/п	Наименование разделов и тем	Всего часов
1	Внутренняя энергия	10
2	Изменения агрегатного состояния вещества	7
3	Тепловые двигатели	3
4	Электрическое поле	5
5	Электрический ток	10
6	Расчет характеристик электрических цепей	9

7	Магнитное поле	6
8	Основы кинематики	9
9	Основы динамики	7
10	Повторение	2
	Итого:	68

9 класс.

№ п/п	Наименование разделов и тем	Всего часов
1	Динамика	8
2	Движение тел вблизи поверхности Земли и	9
	гравитация	
3	Механические колебания и волны, звук	10
4	Электромагнитные колебания	10
5	Геометрическая оптика	11
6	Электромагнитная природа света.	7
7	Квантовые явления	7
8	Строение и эволюция Вселенной	5
9	Итоговое повторение	1
	Итого:	68